Practical Comparison of Optimization Algorithms for Learning-Based MPC with Linear Models

نویسندگان

  • Anil Aswani
  • Patrick Bouffard
  • Xiaojing Zhang
  • Claire J. Tomlin
چکیده

Learning-based control methods are an attractive approach for addressing performance and efficiency challenges in robotics and automation systems. One such technique that has found application in these domains is learning-based model predictive control (LBMPC). An important novelty of LBMPC lies in the fact that its robustness and stability properties are independent of the type of online learning used. This allows the use of advanced statistical or machine learning methods to provide the adaptation for the controller. This paper is concerned with providing practical comparisons of different optimization algorithms for implementing the LBMPC method, for the special case where the dynamic model of the system is linear and the online learning provides linear updates to the dynamic model. For comparison purposes, we have implemented a primal-dual infeasible start interior point method that exploits the sparsity structure of LBMPC. Our open source implementation (called LBmpcIPM) is available through a BSD license and is provided freely to enable the rapid implementation of LBMPC on other platforms. This solver is compared to the dense active set solvers LSSOL and qpOASES using a quadrotor helicopter platform. Two scenarios are considered: The first is a simulation comparing hovering control for the quadrotor, and the second is onboard control experiments of dynamic quadrotor flight. Though the LBmpcIPM method has better asymptotic computational complexity than LSSOL and qpOASES, we find that for certain integrated systems (like our quadrotor testbed) these methods can outperform LBmpcIPM. This suggests that actual benchmarks should be used when choosing which algorithm is used to implement LBMPC on practical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization

In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...

متن کامل

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A PRIMER ON FUZZY OPTIMIZATION MODELS AND METHODS

Fuzzy Linear Programming models and methods has been one ofthe most and well studied topics inside the broad area of Soft Computing. Itsapplications as well as practical realizations can be found in all the real worldareas. In this paper a basic introduction to the main models and methods infuzzy mathematical programming, with special emphasis on those developedby the authors, is presented. As ...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1404.2843  شماره 

صفحات  -

تاریخ انتشار 2014